507=7.5/d^2

Simple and best practice solution for 507=7.5/d^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 507=7.5/d^2 equation:



507=7.5/d^2
We move all terms to the left:
507-(7.5/d^2)=0
Domain of the equation: d^2)!=0
d!=0/1
d!=0
d∈R
We get rid of parentheses
-7.5/d^2+507=0
We multiply all the terms by the denominator
507*d^2-7.5=0
We add all the numbers together, and all the variables
507d^2-7.5=0
a = 507; b = 0; c = -7.5;
Δ = b2-4ac
Δ = 02-4·507·(-7.5)
Δ = 15210
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15210}=\sqrt{1521*10}=\sqrt{1521}*\sqrt{10}=39\sqrt{10}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-39\sqrt{10}}{2*507}=\frac{0-39\sqrt{10}}{1014} =-\frac{39\sqrt{10}}{1014} =-\frac{\sqrt{10}}{26} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+39\sqrt{10}}{2*507}=\frac{0+39\sqrt{10}}{1014} =\frac{39\sqrt{10}}{1014} =\frac{\sqrt{10}}{26} $

See similar equations:

| 3m+3=29 | | 4u+18=8u-14 | | 3=k/13^2 | | -17z^2+41z-30=0 | | −2(b+3)=34−7b | | 30+8*x=102 | | 6*x-25=29 | | 240=6(5+5x) | | 7*x-45=25 | | X^3-6x=64 | | 5*x+50=70 | | 2*x+30=48 | | 2*x-50=-36 | | 65-x=20 | | 9x+21=174 | | 32-4c=12 | | 4*x-50=-22 | | (0.4X)-(0.6x)=16 | | x4x+9=2x−1 | | 5*x+35=55 | | 3*x-10=11 | | 50+9*x=59 | | 4(7+n)=-44 | | 7b–15=62 | | 3x+2=(2x+13/ | | 6y=25.2+-0.8y | | A=56−35x | | 20x-2x2=0 | | 8x+8=9x1+ | | | | 5y+7=24+5y | | 3(x-4)*2=27 |

Equations solver categories